临床证据证实Vivosonic技术的优势
来自独立研究人士和在听力学领域领先专家的临床证据验证了Vivosonic技术的优势,并论证了Integrity™V500系统比传统的AEP设备的实质优势。
下面的调查结果从英语出版物翻译得出。如需查看英文摘要、文章和介绍,请参阅文章和介绍。
Vivosonic技术的优势 |
临床证据 |
Integrity减少镇静的需要 |
高达66-92% 3,4 |
Integrity降低医疗成本 |
至少降低85% 3 每个病人降低达到 $5000 USD 5,6 |
Integrity减少ABR评估等待时长 |
从 原来的> 2 个月缩短到< 3周。1,3 从 5-6 个月到 1周。4 |
Integrity对普适新生儿听力筛查的转介有显著影响 |
增大住院婴儿完成诊断测试的可能性。1 减少了后续跟进的需要。可以测试稍大清醒的婴儿。4 |
相对于传统的AEP系统,Integrity不易受生理噪声影响 |
在50-60分贝peSPL(~15-25分贝nHL)马达稳态噪声条件下有显著优势,获得响应的概率要高30-44%。在婴儿清醒时可启动测试并在20或30分贝 nHL.5 获得V波。5 在4千赫的噪声阈值(生理)更加可靠 - 相比其他竞争产品有更少的“无回应。7 在“活动”状态下,Vivosonic比传统设备让更多的受测者获得正常的V波阈值。8 |
Integrity不容易受电伪影影响 |
在4/5的情况下,Integrity比传统的AEP系统在NICU显示出较低的(更好的)阈值。9 在NICU ABR有效地测试降低电器和肌肉伪迹。不必为进行新生儿听力筛查而改变环境。10 |
Integrity更有效地获得听觉阈值评估 |
ABR评估平均时长减少至1小时20分钟。不再需要预约3个小时的门诊。1 对浅眠或清醒的婴儿进行双耳多频气导和骨导阈值测试,需要的时间不到1.5小时,且已包括其他活动的时间。11 |
Integrity准确地测量听力阈值,并提供有助于临床决策的信息 |
促成超过90%的非镇静案例的管理决策。3 在95%的耳测试中,与临床决策一致或达到更好效果。9 气导和短纯音ABR阈值反应类似于测量精度的常规设备所公布的调查结果。11 40赫兹sASSR和TB-ABR准确地检测4000赫兹时在5-10分贝范围内行为阈值的阈值。15 |
Integrity可对难以测试人群进行有效测试 |
是对行为模式难以测试的儿童进行有效测试的筛查装置。筛查完成率实现从57%(只有行为)到81%(行为和ABR筛查)的显著增长。12 使用短声和500赫兹的短纯音刺激(无镇静) 对脑性瘫痪患者测试可获得较高的成功率。13 真正由噪音引起的听力缺失者可以和那些装病的人区分开来。用其他的ABR系统,装病的病人能够无限期地拖延反应,提升其阈值到他们可以领取保险金的水平。14 |
参考资料
1. |
Walker B (2012). Clinical Significance of Advanced ABR Technology for Newborn Hearing Screening Programs. |
2. |
Marcoux A, Kurtz I (2013). Noise Reduction to Achieve Quality ABR Measurement. |
3. |
Hall JW III, Sauter T (2010). Clinical Experience with New Technology For Recording Un-Sedated ABRs. |
4. |
Sebzda JM (2010). Pediatric ABR testing without sedation? Is it possible? |
5. |
Cone B, Norrix LW. University of Arizona. "Measuring the Advantage of Kalman-Weighted Averaging for Auditory Brainstem Response Hearing Evaluation in Infants". American Journal of Audiology, 2015 Jun;24(2):153-68. |
6. |
Cone B, Dean J, Norrix L, Velenovsky D (2013). Innovations in the Electrophysiologic Assessment of Infant Hearing: Cost Model. |
7. |
Wheeler JK (2011). The Effect of Kalman Weighted Filtering and In-situ Pre-amplification on the Accuracy and Efficiency of ABR Threshold Estimation. |
8. |
Meyer D, Moskop J, Winston A, Schupbach J (2011). ABR Results in Quiet and Active Subjects. |
9. |
Brown DK, Hunter LL, Baroch K, Eads E (2011). Comparison of Auditory Brainstem Response Systems in the NICU Population. |
10. |
Johnson K (2012). Universal Newborn Hearing Screening in the NICU Population Using New Features of the Vivosonic Integrity ABR Unit: Assessing the Correlation Coefficient as a Function of the Number of Sweeps Collected. |
11. |
Elsayed AM, Hunter LL, Keefe DH, Feeney MP, Brown DK, Meinzen-Derr JK, Baroch K, Sullivan-Mahoney M, Francis K, Schaid LG. Cincinnati Children's Hospital Medical Center. "Air and Bone Conduction Click and Tone-Burst Auditory Brainstem Thresholds Using Kalman Adaptive Processing in Nonsedated Normal-Hearing Infants." Ear and Hearing, 2015 Jul-Aug;36(4):471-81. |
12. |
Wiegers JS, Bielefeld EC, Whitelaw GM. The Ohio State University. "Utility of the Vivosonic Integrity™ auditory brainstem response system as a hearing screening device for difficult-to-test children". International Journal of Audiology, 2015 Apr;54(4):282-8. |
13. |
Van der Westhuizen C (2010). The Clinical Utility of the Vivosonic Integrity Auditory Brainstem Response System in Children with Cerebral Palsy. |
14. |
Steinman A, Holdstein Y (2013). Use of the Vivosonic Integrity V500 System to Identify False Indications of Noise Induced Hearing Loss. |
15. |
Kaf WA, Mohamed ES, Elshafiey H (2016). 40-Hz Sinusoidal Auditory Steady-State Response and Tone Burst Auditory Brainstem Response Using a Kalman Filter to Determine Thresholds Pre- and Post-Myringotomy With Grommet Tube in Children With Mild, Low-Frequency Conductive Hearing Loss. Am J Audiol, 2016 Mar;25(1):41-53. |